If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2=8x=0
We move all terms to the left:
2x^2-(8x)=0
a = 2; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·2·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*2}=\frac{0}{4} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*2}=\frac{16}{4} =4 $
| 13x+4+11x+8=180 | | -2x+-12=2 | | -2x=-12=2 | | 9n-28=4n+4 | | 62+2n=75 | | 18=(8x-14)+(x+5) | | 2x+1+27=90 | | 8z-2=3z+35.5 | | 2p-1=4 | | 5m+8=3m+208 | | x-9+66=90 | | x-9=66=90 | | 3f+10=2f+20 | | 2x+9+61=90 | | 3x9=5x17 | | 26+6x+4=90 | | 14(t+1-6)=16t | | 4q+4=5q-2 | | 4x+3+3+3x=90 | | 143+x+9=180 | | 5e-5=3e+13 | | x+3=(5x-5)+5 | | 9v+9=2v+23 | | 130+x-15=180 | | 5=(5x-5)+(x+3) | | 5x-5=(x+3)+5 | | 7t-6=2t+24 | | 2+u=12 | | 5u+5=4u+13 | | -5r=3(r+3)+7 | | 5x-3=(x+13)+8 | | 7-(2y-4)=1-3y |